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There are four cycles in our previous CPU design, Fetch, Decode, Execute and Store (aka
'Write back'). In our current cpu design these 4 cycles are performed one at a time, thus our
CPU executes an instruction from memory for every 4 cycles of the CPU clock. With a few
changes we can increase our performance substantially to almost achieve a single instruction
per clock cycle.

      

There is a common analogy used when explaining CPU pipelining and also where the name
pipelining is borrowed from. You can think of each of these cycles like steps in a manufacturing
pipeline. Each step performs it's function and the result is passed to the next step. Like a toy
that is assembled along a conveyor from station to station, each worker in turn adds a piece to
the final assembly. In any moment, there is 1 toy being finished, and N-1 toys partially
completed, where N is the number of assembly stations.

A similar semantic is used to reduce the 4 clock cycles per instruction (so N=4) down to an
apparent single clock cycle per instruction, albiet with a few caveats we will discuss later. We
turn the standard design on it's head, and each "station" of the pipeline performs a single
operation each clock cycle on one of the N instructions in the pipeline. Each instruction still
takes 4 clock cycles to fetch, decode, execute and write back, however each clock cycle will
result in a finished instruction. Seen another way, at any particular instant 3 instructions will be
in the process of executing and 1 will complete. 

  Pipeline Stalls
  

There are some problems that arise when implementing pipelining. These problems will prevent
the CPU from reaching the theoretical maximum cpu speed of 1 instruction for each clock cycle.
The problems arise most commonly during branching operations when a change in the PC
(program counter) register occurs. In such cases there are partially finished instructions within
the pipeline that assumed no branch will occur. In other words, instructions immediately after
the branch instruction entered the pipeline and could not have advance knowledge of the
outcome of the branch condition. Therefor, if and when a branch occurs, existing operations in
the pipeline must be invalidated. There are numerous ways to handle these situations. For now,
we will leave this up to the programmer or compiler to always put 3 NOP instructions
immediately preceeding any branch instruction. These NOPS will ensure proper cpu behavior
no matter the outcome of the branch condition. This essentially makes all branch instructions
take 4 cycles, and all other instructions take a single cycle.

We also have issues with two consecutive instructions accessing the same memory if the first
instruction intends to write a value back to that memory location. The second instruction may
get an old value as it fetched it's data before the write operation finished. Again, as a
programmer we can insert a NOP in these situations, or as a compiler writer we can catch them
during code generation.
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There are also hardware methods to handling pipleline stalls. For example, we can add a single
bit to each pipleline step that indicates if the output of that step is valid. Then if the PC changes
because of a branch instruction, we can set that bit to invalid consequently turning those
pending operations into a NOP. We could also go further and duplicate part of the pipleline so
that a branch traverses both outcomes until such time as the condition can be evaluated. The
latter would keep with 1:1 instruction per clock timing at the cost of a more complex design
requiring more logic.

  

  Verilog Source
  

There are two areas in our design reguired to implement simple pipelining. (1) We must remove
the outer state machine so instead of sequencing through the four instruction cycles each one is
executed in parallel. (2) To link each cycle together like a pipelining assembly line we must also
add some register storage in between to store the result from each cycle until the next cycle
occurs.

  module yfcpu(clk, rst, PC);    // our cpu core parameters  parameter im_size = 8;  // 2^n
instruction word memory  parameter rf_size = 4;  // 2^n word register file    // a parameter for the
bus width of our cpu  parameter bw = 8;    input clk; // our system clock  output PC; // our
program counter  input rst; // reset signal    // the cycle states of our cpu, i.e. the Control Unit
states  parameter s_fetch   = 3'b000; // fetch next instruction from memory  parameter s_decode
 = 3'b001; // decode instruction into opcode and operands  parameter s_execute = 3'b010; //
execute the instruction inside the ALU  parameter s_store   = 3'b011; // store the result back to
memory  parameter s_nostore = 3'b100; // dont store any result, skips a cycle    // the parts of
our instruction word  parameter opcode_size = 4;  // size of opcode in bits    // Mnemonic Op
Codes  parameter LRI   = 4'b0001;  parameter ADD   = 4'b0100;  parameter SUB   = 4'b0101; 
parameter OR    = 4'b0110;  parameter XOR   = 4'b0111;    // our new branch mnemonics! 
parameter BRA    = 4'b1000;   // branch to address in memory location RB  parameter BRANZ 
= 4'b1001;   // branch to address in memory location RB, if RA is zero  parameter BRAL   =
4'b1010;   // branch to literal address RB  parameter BRALNZ = 4'b1011;   // branch to literal
address RB, if RA is zero  parameter CALL   = 4'b1100;   // call subroutine; store current PC into
RD and jump to address in literal location RB    parameter HALT  = 4'b1111;        // our memory
core consisting of Instruction Memory, Register File and an ALU working (W) register  reg [
opcode_size + (rf_size*3) -1 : 0 ] IMEM[0: (1 << im_size) -1 ] ; // instruction memory  reg [
bw-1:0 ] REGFILE[0: (1 << rf_size) -1 ]; // data memory  reg [ bw-1:0 ] W; // working
(intermediate) register    // our cpu core registers  reg [ im_size-1 : 0 ] PC;   // program counter 
reg [ opcode_size + (rf_size*3) -1 : 0 ] IR; // instruction register    /* Control Unit registers      
The control unit sequencer cycles through fetching the next instruction       from memory,
decoding the instruction into the opcode and operands and       executing the opcode in the
ALU.  */  reg [ 2:0 ] current_state;  reg [ 2:0 ] next_state;    // our instruction registers  // an
opcode typically loads registers addressed from RA and RB, and stores  // the result into
destination register RD. RA:RB can also be used to form  // an 8bit immediate (literal) value. 

 2 / 3



Your First CPU - Chapter 4 - Pipelining
Last Updated Sunday, 16 May 2010 07:52

reg [ opcode_size-1 : 0 ] OPCODE;  reg [ rf_size-1 : 0 ] RA;   // left operand register address 
reg [ rf_size-1 : 0 ] RB;   // right operand register address  reg [ rf_size-1 : 0 ] RD;   // destination
register      /* Pipeline flags */  reg F_STORE; // execute cycle sets if W should be written to RD
in writeback cycle  reg F_HALTED; // if set, we halt execution until a reset instruction (in a sim,
we finish)    // the initial cpu state bootstrap  initial begin   PC = 0;   current_state = s_fetch;     //
LOADROM: here we load the rom file generated by our assembler!!!  
$readmemh("test.rom",IMEM,0,14);     wait(OPCODE == HALT)
$writememh("regfile",REGFILE);   end          // at each clock cycle we sequence the Control
Unit, or if rst is  // asserted we keep the cpu in reset.  always @ (clk, rst)  begin   if(rst) begin   
current_state = s_fetch;    PC = 0;    F_HALTED = 0;    end   else if(!F_HALTED)      begin      //
perform a fetch, decode, execute and writeback cycle concurrently    // FETCH :  fetch
instruction from instruction memory    IR = IMEM[ PC ];    PC = PC + 1;  // increment program
counter (instruction mem pointer)      // DECODE : decode the opcode and register operands   
OPCODE = IR[ opcode_size + (rf_size*3) -1 : (rf_size*3) ];    RA = IR[ (rf_size*3) -1 : (rf_size*2)
];    RB = IR[ (rf_size*2) -1 : (rf_size  ) ];    RD = IR[ (rf_size  ) -1 : 0 ];      // EXECUTE : Execute
ALU instruction, process the OPCODE    case (OPCODE)     LRI: begin         // load register RD
with immediate from RA:RB operands        W = {RA, RB};        F_STORE = 1;        end              
ADD: begin         // Add RA + RB        W = REGFILE[RA] + REGFILE[RB];        F_STORE = 1;    
   end             SUB: begin         // Sub RA - RB        W = REGFILE[RA] - REGFILE[RB];       
F_STORE = 1;       end       OR: begin         // OR RA + RB        W = REGFILE[RA] |
REGFILE[RB];        F_STORE = 1;        end             XOR: begin         // Exclusive OR RA ^ RB    
   W = REGFILE[RA] ^ REGFILE[RB];        F_STORE = 1;        end             HALT: begin        //
Halt execution, loop indefinately        F_HALTED = 1;        $finish; // quit the sim        end            
BRA: begin        // branch to REGFILE[RB]        PC = REGFILE[RB];        F_STORE = 0;       
end       BRAL: begin        // branch to RB        PC = RB;        F_STORE = 0;        end            
BRANZ: begin        // branch to REGFILE[RB] if REGFILE[RA] is zero        if(REGFILE[RA]
!=8'd0)           PC = REGFILE[RB];        F_STORE = 0;        end       BRALNZ: begin        //
branch to RB if REGFILE[RA] is zero        if(REGFILE[RA] !=8'd0)             PC = RB;       
F_STORE = 0;        end             CALL: begin        // call a subroutine; store PC into RD and jump
to location in REGFILE[RB]        W = PC;        PC = RB;        F_STORE = 1;        end                //
catch all : NOP!     default: begin         F_STORE = 0;     end    endcase         // STORE : store
the ALU working register into the destination register RD    if(F_STORE)     REGFILE[RD] = W;  
       // move the control unit to the next state   end  end    endmodule    
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